Stimulation of beta 2-adrenergic receptor increases cystic fibrosis transmembrane conductance regulator expression in human airway epithelial cells through a cAMP/protein kinase A-independent pathway.
نویسندگان
چکیده
PSD-95/Dlg-A/ZO-1 (PDZ) domains play an essential role in determining cell polarity. The Na(+)/H(+) exchanger regulatory factor (NHERF), also known as EBP50, contains two PDZ domains that mediate the assembly of transmembrane and cytosolic proteins into functional signal transduction complexes. Moreover, it has been shown that cystic fibrosis transmembrane conductance regulator (CFTR) and beta(2)-adrenergic receptor (beta(2)AR) bind equally well to the PDZ1 domain of EBP50. We hypothesized that beta(2)AR activation may regulate CFTR protein expression. To verify this, we evaluated the effects of a pharmacologically relevant concentration of salmeterol (2.10(-7) m), a long acting beta(2)AR agonist, on CFTR expression in primary human airway epithelial cells (HAEC). beta(2)AR stimulation induced a time-dependent increase in apical CFTR protein expression, with a maximal response reached after treatment for 24 h. This effect was post-transcriptional, dependent upon the beta(2)AR agonist binding to beta(2)AR and independent of the known beta(2)AR agonist-mediated cAMP/PKA pathway. We demonstrated by immunohistochemistry that CFTR, beta(2)AR, and EBP50 localize to the apical membrane of HAEC. Analyses of anti-EBP50 protein immunoprecipitate showed that salmeterol induced an increase in the amount of CFTR that binds to EBP50. These data suggest that beta(2)AR activation regulates the association of CFTR with EBP50 in polarized HAEC.
منابع مشابه
Signaling Cascade Involved in Rapid Stimulation of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) by Dexamethasone
Impairment of mucociliary clearance with reduced airway fluid secretion leads to chronically inflamed airways. Cystic fibrosis transmembrane conductance regulator (CFTR) is crucially involved in airway fluid secretion and dexamethasone (dexa) has previously been shown to elevate CFTR activity in airway epithelial cells. However, the pathway by which dexa increases CFTR activity is largely unkno...
متن کاملIL-8 inhibits cAMP-stimulated alveolar epithelial fluid transport via a GRK2/PI3K-dependent mechanism.
Patients with acute lung injury (ALI) who retain maximal alveolar fluid clearance (AFC) have better clinical outcomes. Experimental and small clinical studies have shown that β2-adrenergic receptor (β2AR) agonists enhance AFC via a cAMP-dependent mechanism. However, two multicenter phase 3 clinical trials failed to show that β2AR agonists provide a survival advantage in patients with ALI. We hy...
متن کاملA(2) adenosine receptors regulate CFTR through PKA and PLA(2).
We investigated adenosine (Ado) activation of the cystic fibrosis transmembrane conductance regulator (CFTR) in vitro and in vivo. A(2B) Ado receptors were identified in Calu-3, IB-3-1, COS-7, and primary human airway cells. Ado elevated cAMP in Calu-3, IB-3-1, and COS-7 cells and activated protein kinase A-dependent halide efflux in Calu-3 cells. Ado promoted arachidonic acid release from Calu...
متن کاملSpiperone, identified through compound screening, activates calcium-dependent chloride secretion in the airway.
Cystic fibrosis (CF) is caused by mutations in the gene producing the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR functions as a Cl(-) channel. Its dysfunction limits Cl(-) secretion and enhances Na+ absorption, leading to viscous mucus in the airway. Ca2+-activated Cl(-) channels (CaCCs) are coexpressed with CFTR in the airway surface epithelia. Increases in cytosolic Ca(2...
متن کاملThe human CFTR protein expressed in CHO cells activates aquaporin-3 in a cAMP-dependent pathway: study by digital holographic microscopy.
The transmembrane water movements during cellular processes and their relationship to ionic channel activity remain largely unknown. As an example, in epithelial cells it was proposed that the movement of water could be directly linked to cystic fibrosis transmembrane conductance regulator (CFTR) protein activity through a cAMP-stimulated aqueous pore, or be dependent on aquaporin. Here, we use...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 278 19 شماره
صفحات -
تاریخ انتشار 2003